Tetrahedron Letters, Vol. 26, No. 45, pp 5491-5492, 1985 0040-4039/85 \$3.00 + .00 Printed in Great Britain

CRYPTOCARYONE: A REVISED STRUCTURE

Joseph A. Maddry, Balawant S. Joshi, M. Gary Newton and S. William Pelletier* Institute for Natural Products Research and the Department of Chemistry, The University of Georgia, Athens, Georgia 30602, U.S.A.

P. C. Parthasarathy* Hindustan CIBA-GEIGY Research Centre, Goregaon, Bombay 400063, India

Cryptocaryone, formulated earlier as the chalcone 1, has been shown to have Summary: structure 2 by an X-ray crystallographic analysis. Carbon-13 assignments are given.

A novel, orange dihydrochalcone cryptocaryone, $C_{17H_14}O_4$, was isolated from the roots of Cryptocarya bourdilloni Gamb. and its structure (1) was derived from spectral and degradative evidence.¹ This structure was also supported by transformation of cryptocaryone into 5-carbomethoxymethylflavone in three steps and a synthesis of the same.

The 1 H nmr spectrum and the decoupling experiments leave no doubt about the environment of the protons in cryptocaryone. However, since it is the only example of a natural flavonoid

ORTEP drawing of cryptocaryone, 2

having a partially reduced ring A, except for ceroptin², and since the assigned structure has been questioned³, we wished to establish the structure of cryptocaryone by an X-ray analysis.

Cryptocaryone was crystallized from diethyl ether. A crystal approximately 0.5 mm on a side was mounted on a glass fiber, and preliminary examination and data collection were performed on an Enraf-Nonius CAD4 diffractometer system employing CuK α radiation (λ = 1.542Å). The crystals belonged to the orthorhombic space group P2₁2₁2₁ with a = 7.480 (2), b = 10.921 (1), c = 17.485 (2)Å, z = 4, and d_{calc} = 1.31 g/cm³. Data were collected out to 2 θ = 150° using ω -2 θ scans of width (0.8 + 0.14 tan θ)° and variable scan speed. Of the 1730 reflections measured, 1341 unique reflections were judged observed (I > 3 σ (I)) after application of Lorentz and polarization corrections and were used in the least squares refinement.

The structure of cryptocaryone (2) was solved by direct methods. Using 250 reflections (minimum E of 1.40) 20 atoms were located from the E-map. Remaining non-hydrogen atoms were found on a difference map after partial full-matrix least squares refinement. After anisotropic refinement of the non-hydrogen atoms the hydrogens were not discernable from a difference synthesis; thirteen of these were located using stereochemical criteria and refined isotropically (the hydroxy proton was not located). The quantity minimized in refinement was w $(\Delta F)^2$ where the weight w = $1/\sigma(F)^2$. The final R factor was 0.052, and $R_W = 0.064.^4$

An ORTEP plot of cryptocaryone is shown. Except for the five-membered saturated lactone ring which is *cis*-fused to ring A, the molecule exists in an extended, planar conformation, the least squares plane of the phenyl ring being inclined 14.1° to that of the skeletal carbons C(3) through C(11). Bond length considerations clearly indicate that ring A exists as an α , β -unsaturated ketone and not as an enolic dihydrobenzene as depicted in 1. The C(9)-O(4) bond possesses largely single-bond character.

The 13 C-nmr spectrum (SFORD) indicated five singlets, nine doublets and one triplet. The chemical shifts and assignments are as follows: C(1)174.7^a, C(2)35.4, C(3)34.0, C(4) 76.1, C(5)139.7, C(6)130.1, C(7)185.1, C(8)103.6, C(9)174.2^a, C(10)117.1, C(11) 142.5, C(12)135.1, C(13) and C(17)128.3, C(14) and C(16)129.2, C(15)130.5 (a. these assignments may be interchanged). The elusive problem of deciding between the keto-enol tautomeric structures of cryptocaryone could not have been solved without an X-ray analysis or in solution employing carbon-carbon connectivity 2D 13 C-nmr techniques.

REFERENCES

- T.R. Govindachari and P.C. Parthasarathy, *Tetrahedron Letters*, 3419 (1972); T.R. Govindachari, P.C. Parthasarathy, H.K. Desai and M.N. Shanbhag, *Tetrahedron*, 29, 3091 (1973).
- B.A. Bohm in The Flavonoids, Advances in Research, Eds. J.B. Harbourne and T.J. Mabry, Chapman and Hall, London, 1982, p. 313.
- 3. J. Gosteli, private communication to P.C.P during a seminar in Basle in 1980.
- 4. Tables of atomic coordinates, bond distances and angles and thermal parameters, all with standard deviations are deposited with the Cambridge Crystallographic Data Centre.

(Received in USA 13 August 1985)